Author Affiliations
Abstract
1 Marvel Fusion GmbH Munich 80339 Germany
2 Electrical and Computer Engineering Department Colorado State University Fort Collins Colorado 80523 USA
3 Physics Department Colorado State University Fort Collins Colorado 80523 USA
We present results from a pitcher-catcher experiment utilizing a proton beam generated with nanostructured targets at a petawatt-class, short-pulse laser facility to induce proton-boron fusion reactions in a secondary target. A 45-fs laser pulse with either 400 nm wavelength and 7 J energy, or 800 nm and 14 J, and an intensity of up to 5 × 1021 W/cm2 was used to irradiate either thin foil targets or near-solid density, nanostructured targets made of boron nitride (BN) nanotubes. In particular, for 800 nm wavelength irradiation, a BN nanotube target created a proton beam with about five times higher maximum energy and about ten times more protons than a foil target. This proton beam was used to irradiate a thick plate made of boron nitride placed in close proximity to trigger 11B (p, α) 2α fusion reactions. A suite of diagnostics consisting of Thomson parabola ion spectrometers, postshot nuclear activation measurements, neutron time-of-flight detectors, and differentially filtered solid-state nuclear track detectors were used to measure both the primary proton spectrum and the fusion products. From the primary proton spectrum, we calculated (p, n) and (α,n) reactions in the catcher and compare with our measurements. The nuclear activation results agree quantitatively and neutron signals agree qualitatively with the calculations, giving confidence that primary particle distributions can be obtained from such measurements. These results provide new insights for measuring the ion distributions inside of proton-boron fusion targets.
Laser and Particle Beams
2022, 2022(4): 2404263

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!